Carbon incorporation effects and reaction mechanism of FeOCl cathode materials for chloride ion batteries
نویسندگان
چکیده
Metal oxychlorides are proved to be new cathode materials for chloride ion batteries. However, this kind of cathode materials is still in a very early stage of research and development. The obtained reversible capacity is low and the electrochemical reaction mechanism concerning chloride ion transfer is not clear. Herein, we report FeOCl/carbon composites prepared by mechanical milling of the as-prepared FeOCl with carbon nanotube, carbon black or graphene nanoplatelets as cathode materials for chloride ion batteries. The electrochemical performance of the FeOCl electrode is evidently improved by the incorporation of graphene into the cathode. FeOCl/graphene cathode shows a high reversible capacity of 184 mAh g(-1) based on the phase transformation between FeOCl and FeO. Two stages of this phase transformation are observed for the FeOCl cathode. New insight into the reaction mechanism of chloride ion dissociation of FeOCl is investigated by DFT + U + D2 calculations.
منابع مشابه
Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries
As a group of attractive photoelectromagnetic and catalytic functional materials, metal oxychlorides have been attracting attention for electrochemical energy storage in rechargeable chloride ion battery (CIB) systems recently. Their application, however, is limited by the complicated synthesis and/or poor cycling stability. Herein, a facile strategy using vacuum impregnation and subsequent the...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملElectrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملChloride‐Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium–Sulfur Batteries
Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vap...
متن کامل